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Application of the Blind Source Separation to the mixture analysis by NMR, toward the demixing of the 3D-DOSY experiments
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General Background: Despite the development of NMR methods to increase spectral resolution, the growing complexity of the samples leads to crowded spectra that compromise the analytical performances of this technique.

The association of new mathematical methods for signal processing with the methodological developments in NMR is a promising alternative in this field.
We present the application of Blind Source Separation (BSS)® algorithms to NMR data. This source separation technique, originally used for disciplines such as acoustics and audio signal processing,? has shown its effectiveness for
the demixing of 1D and 2D NMR spectra3. In this case, spectra deconvolution is performed using correlations (essentially concentration variations) detected over a series of data sets, which allows the pure spectra of each of the

mixture constituents to be extracted.

|
BSS Approach: BSS - based methods aim at the separation of a set of pure signals (sources = S spectra) from a set of complex mixed signals (mixtures = X spectra):

X = AS + B = AS where: X = observation matrix (nD observed spectra), A = mixing matrix, S = pure spectrum of each compound to be estimated, B = the residual noise, where the mean gaussian matrix is usually set to zero (Fig. 1).
Among BSS problems, the simplest instance originates from the Linear Instantaneous Mixture (LIM) model where the observed mixtures are linear combinations of the sources. These algorithms are blind because they have to
estimate unknown matrices A (the concentrations in solutions, represented by A coefficients) and S, from X.

- . To seek the spectral separation, several approaches based on different assumptions have been evaluated to lead to
Mixing matljlx Pure spectra | different identification algorithms. In particular, we used the Independent Component Analysis (ICA-JADE), which
W\v ﬁ(unknowni to be estimated) migir‘pize 21X — AS||7 + WA (A) + Pg(S) assumes that the sources are statistically independent, and the Non-Negative Matrix Factorization (NMF), where

" > >
Y W A>0 and S=0.
O Wa(A) = 14(A)
Observations A\Gaussian noise lDS(S) = )\ f"l(WS) + Ao Ellt(S) ] ] ]
Spectra of mixtures B ~ N(0, 0%) Evaluation criteria: To assess the quality of the estimated sources we used Signal to Distortion Ratio (SDR) (in

(solutions) 7ero mean - variance o2 : dB), which provides a global measure of the distortion introduced by mixing and separation, and Signal to
Under constraints A20, S=0 : ) : . . :

Interference Ratio (SIR), which supplies a quantitative evaluation of crossover terms after separation (peaks from a
given source that could be completely or partially found in the estimation of another source). The higher these
ratios, the closer to the original is the estimated source S.

For the matrix A, its estimation quality can be evaluated with the Amari index: O (good estimation) < Amari < 1 (bad

Fig. 1. Mathematical tools: modelling.
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Work in progress & Perspectives

In a recent study?#, our group presented a strategy for processing DOSY experiments based on the synergy of two blind high-performance (BSS) techniques: the Non-Negative Matrix Factorization (NMF) and the joint diagonalization
of the clean matrices (JADE, that can be used to estimate A, and S, for the initialization step). These approaches improved the processing of DOSY experiments for mixtures with strong overlaps in the spectra. As an outgrowth of
this work, we will evaluate the efficiency of the BSS algorithms for the extraction of pure 2D-HSQC spectra from 3D DOSY-HSQC experiment data obtained on terpene and amino acid mixtures.
3D spectra of new amino acid complex mixtures are in progress: Proline, Lysine, Tyrosine, Histidine, Phenylalanine, Tryptophan.
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Fig. 7. The sixteen 2D 1H-13C HSQC spectra (F1=16) of terpene mixtures from the 3D spectrum with
different Gradient strenght (G/cm) as a function of diffusion that means different intensities of the spots.

Conclusions:
The results presented here show that BSS algorithms are able to perform successfully. Algorithms are extremely sensitive to initialization. In nD spectra in general, the dimensionality increases complexity and computational

burden. This may be considered paradoxical, as the structure of 2D spectra seems simpler or at least much sparser than 1D spectra.
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